首页 > 职责大全 > 架空输电线路防雷措施

架空输电线路防雷措施

2024-07-18 阅读 5385

架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。

架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即:

1防直击,就是使输电线路不受直击雷。

2防闪络,就是使输电线路受雷后绝缘不发生闪络。

3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。

4防停电,就是使输电线路建立工频电弧后不中断电力供应。

架空输电线路防雷的具体措施

现对生产运行部门常用的架空输电线路防雷改进措施简述如下:

1架设避雷线

架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用是防止雷直击导线,同时还具有以下作用:

1)分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;

2)通过对导线的耦合作用可以减小线路绝缘子的电压;

3)对导线的屏蔽作用还可以降低导线上的感应过电压。

通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。因此,110kV及以上电压等级的输电线路都应全线架设避雷线。

同时,为了提高避雷线对导线的屏蔽效果,减小绕击率,避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°左右。

2安装避雷针

安装避雷针也是架空输电线路常用的一种防雷措施。

但是在实际应用却存在以下问题:

1)由于避雷针而导致雷击概率增大

2)保护范围小

国内外不少防雷专家,对避雷针能向被保护物有多大的保护距离做了系统的研究得出的结论是:“对一根垂直避雷针无法获得十分肯定的保护区域”。英国的BS6551法规曾指出:“经验显示不能依赖避雷针提供任何保护区内的完整保护”。而德国防雷法规则有意识地不引入避雷针保护范围的概念。从避雷针因侧击雷、绕击雷,造成事故的实例来分析,其保护范围是不十分肯定的。

由于避雷针的引雷作用,所以雷击次数就会提高,当雷电被吸引到针上,在强大的雷电流沿针而流入大地过程中,雷电流周围形成的磁场会产生截应过电压,它与雷电流的大小及变化速度成正比,与雷击的距离成反比。而被保护物的自然屏蔽装置对电磁感应或电磁干扰的屏蔽作用,不能达到有效屏蔽,使被保护区内的弱电设备因感应过电压而损坏。

4)反击的危害

当雷电被吸引到针上,将有数千安的高频电流通过避雷针及其接地引下线和接地装置,此时针和引线的电压很高,若针对被保护物之间的距离小于安全距离时,会由针及引下线向被保护物发生反击,损坏被保护物。我国国标规定针距被保护物的空气中距离≥5米,针距被保护物的接地装置间的地中距离Sd≥3米,针对这一要求,微波塔和电视发射塔的各种天线上的避雷针是难以满足规范的要求。

5)电磁感应问题

在强大的雷电流沿避雷针向下流入地中的过程中,会在周围产生强大的电磁场,它会使微波通信、计算机等设备产生误动。强大的电磁场,可以使金属开口环或打包用铁箍的接触不良处发生放电,从而引燃引爆易燃易爆物。更常见的则是引起微电子设备(通信设备,计算机设备等)的失灵与损坏。受雷击的针及引线,在高频雷电流作用下,将从接触点至地面产生一个较高的接触电压。当雷电流流入大地扩散时,在入地点沿半径各点形成不同的电位,若跨入该区域会产生很高的跨步电压。在测避雷针不适用于对弱电设备的保护,更不易用于易燃易爆品的防雷保护。因它引来强大的雷电流在接地引线断线卡处易产生火花,还会在附近的金属开口环处产生火花,从而引起事故。

3加强线路绝缘

由于输电线路个别地段需采用大跨越高杆塔(如:跨河杆塔),这就增加了杆塔落雷的机会。高塔落雷时塔顶电位高,感应过电压大,而且受绕击的概率也较大。为降低线路跳闸率,可在高杆塔上增加绝缘子串片数,加大大跨越档导线与地线之间的距离,以加强线路绝缘。在35kV及以下的线路可采用瓷横担等冲击闪络电压较高的绝缘子来降低雷击跳闸率。。

4采用差绝缘方式

此措施适宜于中性点不接地或经消弧线圈接地的系统,并且导线为三角形排列的情况。所谓差绝缘,是指同一基杆塔上三相绝缘有差异,下面两相较之最上面一相各增加一片绝缘子,当雷击杆塔或上导线时,由于上导线绝缘相对较“弱”而先击穿,雷电流经杆塔人地,避免了两相闪络。湖南郴州电业局和包头供电局在雷害严重的一些35kV线路上应用了这一方法,收到了事故率明显下降的效果。据计算,采用差绝缘后,线路的耐雷水平可提高24%。

5采用不平衡绝缘方式

在现代高压及超高压线路上,同杆架设的双回路线路日益增多,对此类线路在采用通常的防雷措施尚不能满足要求时,可考虑采用不平衡绝缘方式来降低双回路雷击同时跳闸率,以保障线路的连续供电。不平衡绝缘的原则是使双回路的绝缘子串片数有差异,这样,雷击时绝缘子串片数少的回路先闪络,闪络后的导线相当于地线,增加了对另一回路导线的耦合作用,提高了线路的耐雷水平使之不发生闪络,保障了另一回路的连续供电。

6藕合地埋线

藕合地埋线可起两个作用,一是降低接地电阻,《电力工程高压送电线路设计手册》指出:连续伸长接地线是沿线路在地中埋设1—2根接地线,并可与下一基塔的杆塔接地装置相连,此时对工频接地电阻值不作要隶_国内外的运行经验证明,它是降低高土壤电阻率地区杆塔接地电阻的有效措施之一。二是起一部分架空地线的作用,既有避雷线的分流作用,又有避雷线的藕合作用。据有的单位的运行经验,在一个20基杆塔的易击段埋设藕合地埋线后,10年中只发生一次雷击故障,有文献介绍可降低跳闸率40%,显著提高线路耐雷水平。

7预放电棒与负角保护针

预放电棒的作用机理是减小导、地线间距,增大藕合系数,降低杆塔分流系数,加大导线、绝缘子串对地电容,改善电压分布;负角保护针可看成装在线路边导线外侧的避雷针,其目的是改善屏蔽,减小临界击距。预放电棒与负角保护针常一起装设,这一方法曾在广东、贵州等地采用,有一定的效果。制作、安装和运行维护方便,以及经济花费不多是其特点。

8装设消雷器

消雷器是一种新型的直击雷防护装置,在国内已有十余年的应用历史,目前架空输电线路上装设的消雷器已有上千套,运行情况良好。虽然对消雷器的机理和理论还存在怀疑和争论,但它确实能消除或减少雷击的事实已被越来越多的人承认与接受。消雷器对接地电阻的要求不严,其保护范围也远比避雷针大。在实际装设时,应认真解决好有关的各个环节中的问题。

9使用接地降阻剂

近几年来国内一些单位在处理接地时使用了降阻剂,取得了较好的降阻效果,介绍降阻剂的文章也不少,降阻剂确实热极一时。据有关资料介绍,降阻剂使用后接地电阻随时间的推移而下降,并且由于其PH值一般均在7.6一8.5之间,有的呈中性略偏碱,对接地体有钝化保护作用,故基本无腐蚀现象。但是,使用较长时间表明接地降阻剂对接地体产生了严重的腐蚀。故在采用这一方法时应关注长期的效果,特别是对接地体的腐蚀问题。

10采用中性点非有效接地方式

在我国35kV及以下电力系统中采用中性点不接地或经消弧线圈接地的方式。这样可使由雷击引起的大多数单相接地故障能够自动消除,不致引起相间短路和跳闸。而在二相或三相落雷时,由于先对地闪络的一相相当于一条避雷线,增加了分流和对未闪络相的耦合作用,使未闪络相绝缘上的电压下降,从而提高了线路的耐雷水平。因此,对35kV线路的钢筋混凝土杆和铁塔,必须做好接地措施。

总之,影响架空输电线路雷击跳闸率的因素很多,有一定的复杂性,解决线路的雷害问题,要从实际出发,因地制宜,综合治理。在采取防雷改进措施之前,要认真调查分析,充分了解地理、气象及线路运行等各方面的情况,核算线路的耐雷水平,研究采用措施的可行性、工作量、难度、经济效益及效果等,最后来决定准备采用某一种或几种防雷改进措施。

篇2:输电线路防雷技术措施

随着国民经济的发展与电力需求的不断增长,电力生产的安全运行问题也越来越突出。对于输电线路来讲,雷击跳闸一直是影响高压输电线路供电可靠性的重要因素。由于大气雷电活动的随机性和复杂性,目前世界上对输电线路雷害的认识研究还有诸多未知的成分。进行高压输电线路设计时要全面考虑,综合分析每一条线路的具体情况,通过安全、经济、质量比较,选取有针对性的防雷设计技术措施,以达到提高供电可靠性的目的。

一防雷的原则

线路防雷保护首先在于抓好基础工作,目前国内外在雷电防护手段上并没有出现根本的变化,很大程度上要依赖传统的技术措施,只要运用得好,仍然是可以信赖的。对已投运的线路,应结合地区的地貌、地形、地质以及土壤状况与接地电阻的合理水平给出正确的评价,找出可能存在薄弱环节或缺陷,因地制宜地采取措施。

二雷击跳闸分析

高压输电线路遭受雷击的事故主要与四个因素有关:线路绝缘子的50%放电电压;有无架空地线;雷电流强度;杆塔的接地电阻。高压输电线路各种防雷措施都有其针对性,因此,在进行高压输电线路设计时,我们选择防雷方式首先要明确高压输电线路遭雷击跳闸原因。

2.1高压输电线路绕击成因分析

根据高压输电线路的运行经验、现场实测和模拟试验均证明,雷电绕击率与避雷线对边导线的保护角、杆塔高度以及高压输电线路经过的地形、地貌和地质条件有关。对山区的杆塔,我们的计算公式是:?

山区高压输电线路的绕击率约为平地高压输电线路的3倍。山区设计输电线路时不可避免会出现大跨越、大高差档距,这是线路耐雷水平的薄弱环节;一些地区雷电活动相对强烈,使某一区段的线路较其它线路更容易遭受雷击。

2.2高压输电线路反击成因分析

雷击杆、塔顶部或避雷线时,雷电电流流过塔体和接地体,使杆塔电位升高,同时在相导线上产生感应过电压。如果升高塔体电位和相导线感应过电压合成的电位差超过高压输电线路绝缘闪络电压值,即Uj>U50%时,导线与杆塔之间就会发生闪络,这种闪络就是反击闪络。我们知道,

由以上公式可以看出,降低杆塔接地电阻Rch、提高耦合系数k、减小分流系数β、加强高压输电线路绝缘都可以提高高压输电线路的耐雷水平。在实际设计中,我们着重考虑降低杆塔接地电阻Rch和提高耦合系数k的方法作为提高线路耐雷水平的主要手段。

三高压输电线路防雷措施

清楚了输电线路雷击跳闸的发生原因,我们就可以有针对性的对设计中输电线路经过的不同地段,不同地理位置的杆塔采取相应的防雷措施。

3.1加强高压输电线路的绝缘水平。高压输电线路的绝缘水平与耐雷水平成正比,加强零值绝缘子的检测,保证高压输电线路有足够的绝缘强度是提高线路耐雷水平的重要因素。我们在设计高压线路时充分比较各种绝缘子的性能,分析其特性,认为玻璃绝缘子有较好的耐电弧和不易老化的优点,并且绝缘子本身具有自洁性能良好和零值自爆的特点。特别是玻璃是熔融体,质地均匀,烧伤后的新表面仍是光滑的玻璃体,仍具有足够的绝缘性能,所以设计中我们多考虑采用玻璃绝缘子。

3.2降低杆塔的接地电阻。高压输电线路的接地电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率的情况,尽可能地降低杆塔的接地电阻,这是提高高压输电线路耐雷水平的基础,是最经济、有效的手段。对于土壤电阻率较高的疑难地区的线路,则应跳出原有设计参数的框框,特别是要强化降阻手段的应用,如增加埋设深度,延长接地极的使用,就近增加垂直接地极的运用,使用降阻剂等。

3.3根据规程规定:在雷电活动强烈的地区和经常发生雷击故障的杆塔和地段,可以增设耦合地线。由于耦合地线可以使避雷线和导线之间的耦合系数增大,并使流经杆塔的雷电流向两侧分流,从而提高高压输电线路的耐雷水平。

3.4适当运用高压输电线路避雷器。由于安装避雷器使得杆塔和导线电位差超过避雷器的动作电压时,避雷器就加入分流,保证绝缘子不发生闪络。根据实际运行经验,在雷击跳闸较频繁的高压输电线路上选择性安装避雷器可达到很好的避雷效果。目前我公司在35kV输电线路中根据运行经验,在无避雷线的特定地段安装了一定数量的高压输电线路避雷器,运行反映较好,但由于装设避雷器投资较大,我们只能根据特殊情况少量使用。

四其它方面

我们在进行输电线路设计时还应注意以下几点:

4.1在选择高压输电线路路径时,应尽量避开雷电多发区或对防雷不利的地方;对于易受雷击的杆塔接地,要尽量降低接地电阻。

4.2在选择避雷方式时也要充分考虑本地区的防雷经验及特点,选用合适的避雷方法;

4.3对于雷击多发区也应当减少大档距段的设计和在规程允许的范围内降低塔高。

4.4加强高压输电线路的验收。对于新投产的高压输电线路,做好高压输电线路的验收工作,抽查接地体的埋深是否符合规程的要求,射线长度是否达到设计的长度,接地体与接地引下线是否有可靠的电气连接,这些都是保证杆塔可靠防雷基础。

4.5对已投运的线路,生产单位要加大对老旧线路的投资和改造力度,对运行中发现问题较多的线路、雷击频发区段,要集中人力、资金,尽快进行改造。

五结束语

在总结了输电线路防雷工作存在的问题和如何运用好常规防雷技术措施的基础上,我们认为雷电活动是小概率事件,随机性强,要做好输电线路的防雷工作,就必须抓住其关键点。综上所述,为防止和减少雷害故障,设计中我们要全面考虑高压输电线路经过地区雷电活动强弱程度、地形地貌特点和土壤电阻率的高低等情况,还要结合原有高压输电线路运行经验以及系统运行方式等,通过比较选取合理的防雷设计,提高高压输电线路的耐雷水平。雷电活动是一个复杂的自然现象,需要电力系统内各个部门的通力合作,才能尽量减少雷害的发生,将雷害带来的损失降低到最低限度。

篇3:输电线路防雷技术措施

随着经济的发展,对输电线路供电可靠性的要求越来越高。同时伴随着电网的发展,雷击输电线路引起的跳闸、停电事故绝对值也日益增多。据电网故障分类统计表明,在我国跳闸率较高的地区,高压线路运行的总跳闸次数中,由于雷击原因的事故次数约占(50~70)%。尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高,带来巨大的损失。要保障线路安全运行;应对雷害原因进行有效的分析,确定雷击性质,并采取相应有效的防雷措施。

1雷害原因分析

输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。

输电线路感应雷过电压最大可达到400kV左右,它对35KV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威胁很小,110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。直击雷又分为反击和绕击,都严重危害线路安全运行。在采取各种防雷措施之前,应该对雷击性质进行有效分析,准确分析每次线路故障的闪络类型,采用针对性强的防雷措施,才能达到很好的防雷效果。

反击雷过电压是雷击杆顶和避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加强绝缘,提高耐雷水平。绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,主要与雷电流幅值,线路防雷保护方式,杆塔高度,特殊地形有关,主要发生在两边相。目前对绕击雷过电压采取的主要措施是减少避雷线保护角,安装避雷器等。

实际运行经验表明:山区线路由于地形因素的影响和有效高度的增加,绕击率较高;平原,丘陵地区的线路则以反击为主。山区线路选择良好的防雷走廊,减小避雷线保护角,加强绝缘是最有效的防雷措施。对于平原,丘陵地区的线路降低按地电阻是最有效的防雷措施。

影响雷害的因素有很多,通过对输电线路雷击故障分析,准确判断雷害故障的性质,必须掌握线路的运行状况,结合现场地理情况进行综合分析。

2防雷措施

输电线路防雷设计的目的是提高线路的防雷性能,降低线路的雷击跳闸率。在确定线路防雷的方式时,应综合考虑系统的运行方式、线路电压等级和重要程度、线路经过地区雷电活动的强弱、地形地貌特点、土壤电阻率等自然条件,并参考当地原有线路的运行经验,经过技术经济比较,采取合理的保护措施。除架设避雷线措施之外,还应注意做好以下几项措施。

2.1接地装置的处理

(1)高压输电线路耐雷水平随杆塔接地电阻的增加而降低。电压等级越高,降低杆塔接地电阻的作用将变得更加重要。对土壤电阻率较高地区,应选择更换接地网形式和置换土壤的方法,达到降阻。在雷击多发区域,主网线路杆塔接地电阻应保证小于10Ω,山区也应小于15Ω。在雷雨季节前,对雷击多发区域线路应按规程要求的方法,进行杆塔接地电阻测量。

(2)接地装置埋深,要求大干0.6m,采用增大截面的接地引下线,引下线(热镀锌)表面要进行防腐处理。严格按照规程执行接地装置的开挖检查制度。重点检查接地装置的埋深、接头和截面的测量,对不合格的及时进行处理。

(3)降低杆塔接地电阻,还需要确保架空地线、接地引下线、地网相互之间的良好连接。

2.2减小外边相避雷线的保护角或者采用负角保护

在以往进行防雷设计时,只要求遵照规程规定满足杆塔避雷线保护角的要求就行了,忽略了山坡对防雷保护角的影响,则造成了杆塔防雷保护角不能满足防雷设计的实际要求,增加了线路闪络次数,影响了电网安全运行。针对山区运行线路容易受绕击的情况,建议采用有效屏蔽角公式计算校验杆塔有效保护角,以便设计时针对保护角偏大情况采取相应措施减少雷电绕击概率。

2.3加强绝缘和采用不平衡绝缘方式

在雷电活动强烈地段、大跨越高杆塔及进线段,应增加绝缘子片数。因为这些地方落雷机会较多,塔顶电位高,感应过电压大,受绕击的概率也较大,通过适当增加绝缘子片数,增大导线和避雷线间的距离,达到加强绝缘的目的。规程规定:全高超过40m的有地线杆塔,每增高10m应增加一片绝缘子。随着同杆塔架设双回线路的不断出现,当普通的防雷措施不能满足要求时,采用不平衡绝缘方式可避免双回线路在遭受雷击时同时跳闸。其原理是两回路的绝缘子片数不同,遇到雷击情况时,绝缘子片数少的一回路先闪络,闪络后的导线相当于避雷线,增加了对另一回路导线的耦合作用,提高了另一回路的耐雷水平,使之不发生闪络,保持连续供电。

2.4安装避雷器

避雷线的架设在一定程度上降低了导线上的感应过电压,但不是完全消除,这就要求安装避雷器来将雷电流泄放到大地,从而限制过电压,保障输电线路及设备的安全。未沿全线架设避雷线的35kV~110kV架空输电线路,应在变电所1km~2km的进线段架设避雷线。此外,发电厂、变电所的35kV及以上电缆进线段,在电缆与架空线的连接处应装设阀型避雷器,连接电缆段的1km架空线路应架设避雷线。

2.5装设自动重合闸装置

由于线路绝缘具有自恢复性能,大多数雷击造成的闪络事故在线路跳闸后能够自行消除。因此,安装自动重合闸装置对于降低线路的雷击事故率具有较好的效果。据统计,我国110kV及以上的高压线路重合闸成功率达75%~95%,35kV及以下的线路成功率约为50%~80%。因此,各级电压等级的线路均应尽量安装自动重合闸装置。

2.6加强雷电监测,消除设备隐患

雷击闪络中单相闪络机会最多,闪络地点也是一基杆塔比较多见,但有时也有连续几基同时闪络,或相隔几基闪络的。所以,故障巡查时,不能只查到一个故障点就结束故障巡视,而应把全区段查完。对110kV及以上输电线路可以应用雷电定位系统,雷电定位系统是一种全自动实时雷电监测系统。当线路发生雷击跳闸时,雷电定位系统能准确定位雷击杆塔,帮助巡线人员及时查找故障点,大大节省巡线人员的故障巡视时间,使线路及时恢复供电,确保线路的供电可靠性。同时,通过对雷电定位系统的统计分析,能及时掌握雷电活动的规律、特性和有关数据,为做好防雷工作提供保证。

3结语

雷电活动是一种复杂的大自然现象,目前没有哪种防雷措施能够起到绝对防雷作用,即使比较成熟的防雷措施,也只能是相对降低雷害概率,减少线路雷击跳闸次数。为大幅度降低或消除雷害事故,必须在实践中探索,不断积累运行经验,完善输电线路的防雷措施,采取更有效的防雷措施。