首页 > 职责大全 > 发电机氢气纯度降低原因防范措施

发电机氢气纯度降低原因防范措施

2024-07-12 阅读 4676

1、发电机本体方面

发电机本体在安装过程中必须严格按照制造厂图纸说明书和《电力建设施工及验收技术规范》(以下简称《规范》)做好以下现场试验:

①发电机定子绕组水路水压试验。该试验必须在电气主引线及柔性连接线安装后进行,主要检查定子端部接头、绝缘引水管、汇水管、过渡引线及排水管等处有无渗漏现象。②发电机转子气密性试验。试验时特别要用无水乙醇检查导电螺钉处是否有渗漏现象。③氢气冷却器水压试验。④发电机定子单独气密性试验。试验时用堵板封堵密封瓦座,试验范围包括:定子、出线瓷套管、出线罩、测温元件接线柱板、氢冷器、氢冷器罩、端盖、机座等。试验介质应为无油、干净、干燥的压缩空气或氮气,试验压力为0.3Mpa,历时24小时,要求漏气量小于0.73m3/24h(或漏氢率小于0.3%)。

2、发电机外端盖方面

①在发电机穿转子之前先进行外端盖试装。主要检查水平、垂直中分面的间隙,在把紧1/3螺栓状态下,用0.03mm塞尺检查应不入。②在把合外端盖前,应预填HDJ892密封填料于接合面密封槽内,然后均匀把紧螺栓。再用专用工具注入HDJ892密封胶于密封槽内。

3、氢气冷却器方面

①氢气冷却器罩通过螺栓把紧在定子机座上,之间的结合面有密封槽,注入密封胶进行密封,安装完后在氢气冷却器罩与定子机座之间烧密封焊。②氢气冷却器装配在氢气冷却器罩内,冷却器与冷却器罩之间用密封垫密封,密封垫两面均匀涂一层750-2型密封胶,氢气冷却器组装前后均进行严密性试验。

4、发电机出线罩处泄漏

发电机出线罩安装完后应及时烧密封焊,一旦穿入出线将无法内部焊接,若运行中确认发电机出线罩处泄漏,往往因位置狭窄或运行安全考虑无法处理。

5、发电机轴密封装配方面

轴密封装置是氢密封系统中一个很重要的环节,机组大多采用双流环式油密封,密封瓦的氢侧与空侧各自是独立的油路,平衡阀使两路油压维持平衡(压差小于1Kpa);油压与氢压差由差压阀控制(压差为0.085±0.01MPa),密封瓦可以在轴颈上随意径向浮动,并通过圆键定位于密封座内。

①密封座水平接合面应严密,每平方厘米接触1-2点的面积不应低于75%,且均匀分布。②在把紧水平接合面螺栓的情况下,密封座内与密封瓦配合的环形垂直面以及密封座与端盖的垂直接合面均应垂直无错口,水平接合面用0.03mm塞尺检查应塞不进。对座内沿轴向两侧面的检查,可用整圆无错口的密封瓦做平板放入其内做涂色检查,两侧面均应均匀接触。③密封瓦座各垂直配合面应光洁,各油室畅通,无铁锈、锈皮等杂物。④密封瓦座各把合螺孔的丝孔应无损坏,经试装确认能够把紧密封座。⑤密封瓦水平接合面应接触良好,每平方厘米接触1-2点的面积应不低于75%,且均匀分布。⑥在把合好密封瓦后,密封瓦的上、下两半的垂直面必须在同一平面内,不得错口。在平板上检查应无间隙。⑦密封瓦两侧垂直面应光洁,表面无凹坑和裂纹,两垂直面的不平行度应符合图纸要求。⑧巴氏合金应无夹渣、气孔,表面无凹坑和裂纹,经检查应无脱胎现象。密封瓦油孔和环形油室内必须光洁,无铁屑、锈皮等杂物。⑨密封瓦与轴颈的间隙为0.23-0.28mm,间隙偏小可对密封瓦乌金进行适当的均匀修刮,如间隙偏大,则更换密封瓦;密封瓦与密封瓦座的轴向间隙为0.19-0.23mm,间隙偏小可将密封瓦上磨床研磨,如间隙偏大,则更换密封瓦。⑩组装密封瓦时,注意辨别汽、励两端密封装置,不能装错。在把合密封座与端盖垂直接合面的过程中,应不断拨动密封瓦,保证在所有螺栓把紧后,密封瓦在座内无卡涩。油密封装置装完后,各接合面螺栓应全部锁紧。⑾油密封装置的油腔必须彻底清理,各油压取样管接头在把紧后均不能堵塞和渗漏。否则会因为油压测量不准而影响密封油的跟踪调节。

6、发电机气体管道方面

①气体管道法兰密封垫均采用δ=2mm的塑料王板加工。法兰焊接时要先将法兰螺栓紧固,然后进行焊接,避免焊接变形使法兰出现张口而密封不严。②气体管道在现场进行二次设计,对管道的走向进行统一规划布置,保证走向合理、美观、无∪形弯。所有气体管道与发电机均采用焊接相连,发电机定子多余的接口用堵头焊死。③气体管道的阀门全部采用密封性能良好的隔膜阀,在现场进行1.25倍的水压试验,保证严密不漏。④气体管道安装完后,单独进行气密性试验。

7、密封油系统方面

密封油系统向密封瓦提供密封油,油压必须随时跟踪发电机内气体压力的变化(压差为0.085±0.01MPa),且密封瓦氢空侧的油压必须时刻保持平衡(压差小于1Kpa)。所以,密封油系统运行正常与否直接关系到发电机密封瓦是否能有效密封。

①必须保证密封油系统的清洁度,油循环后,油质必须达到MOOG四级以上标准。②密封油系统的管道在现场进行二次设计,对管道的走向进行统一规划布置,压差阀和平衡阀的引压管走向一致且连接正确,不得有∪形弯,引压管采用不锈钢管,焊接时采用套管焊接,保证管内的清洁,同时必须保证引压管不得有任何渗漏。③在密封油循环阶段,必须安排对密封瓦进行翻瓦清理。④氢密封油箱端盖应密封严密,无泄漏。

8、发电机整套风压试验

发电机整套风压试验是发电机本体及辅助系统安装完后的一次质量大检验,是保证发电机漏氢率(量)达到预定目标的最后一道工序,所有造成系统泄漏的现象均必须在此阶段消除。

二、发电机氢气纯度下降原因分析及防范措施

1、密封油差压阀、平衡阀及相关表计故障

在正常的情况下,发电机轴封装置内密封瓦中的空侧和氢侧密封油具有相同的压力,空侧和氢侧密封油各自保持相对独立的状态进行循环。若密封油系统的平衡阀跟踪不好,或是由于平衡阀空侧、氢侧压力取样管中的压力损失不同,虽然从平衡表上观察空、氢两侧的密封油压是平衡的。

①若空侧密封油压高于氢侧密封油压,则含有大量空气的空侧密封油向氢侧密封油窜油,此时窜到氢侧的空侧密封油将随氢侧密封油一起回到发电机的氢侧回油腔,即消泡箱,然后经氢侧回油管,返回到氢侧密封油箱中,由于空侧密封油箱中含有多量的空气和水分,当含有空气的油通过密封瓦与氢气接触时,根据分压定律,油中分离出来的气或汽会进入到发电机内,造成氢气纯度下降、湿度上升将空侧密封油内所含的空气带入发电机内。

?②若氢侧密封油压高于空侧密封油压,则氢侧密封油向空侧密封窜油,此时将使氢侧密封油箱中的密封油量减少,油位降低,系统为了保证安全运行,将自动向氢侧密封油箱中补油。这样就将含有大量空气的空侧密封油补进了氢侧密封油箱,使氢侧密封油中的空气含量增加,氢气纯度下降、湿度上升得更快。按厂家要求,密封瓦空、氢两侧的密封油压是平衡的,空、氢压力平衡阀安装在氢侧主管路上(立式倒装),通过调整阀体内的弹簧可以调整压力平衡,调整精度可达50mm水柱,大约在1KPa以下。热控专业进行压力表的效验,通过分析判断氢气纯度下降是汽端或励端造成的,以便有针对性的进行分析处理。

2、发电机进油方面

了解机组以前或现在是否存在发电机进油的问题,若大量的氢侧密封油漏入发电机内,将使氢侧密封油箱油位降低,在系统的自动补油过程中,会将含有大量空气的空侧密封油补进了氢侧密封油箱,从而使氢侧密封油中的空气含量增加,导致发电机纯度下降。

3、氢密封油箱浮子阀故障

密封油系统中的自动补、排油的浮球阀卡涩,所导致的浮球阀不能正常开启或关闭,或因浮球阀的浮球内漏后进油,不能正常浮起造成浮球阀不能正常开启或关闭。这样将导致密封油系统中自动补、排油的功能失常,此时又分以下3种情况:

①若是排油阀出现故障,处于常排状态,则系统为了氢侧密封油箱油位的稳定,就会不断地将含有大量空气的空侧密封油补入氢侧密封油箱,此时补油阀也将进行连续的补油;②若是补油阀出现故障,处于常补状态,系统就会不断地将含有大量空气的空侧密封油补入氢侧密封油箱,使氢侧密封油中的空气含量增加。此时排油阀也将进行连续的排油;③补排油阀都失去了正常的功能,此时发电机密封油系统中的氢侧密封油箱则处于一个连续补排油的动态平衡状态,将大量含有空气的空侧密封油补进了氢侧密封油箱,使氢侧密封油中的空气含量增加。

4、密封油补油方式方面

从补油方式的合理性去分析,其中哈尔滨电机厂300MW发电机密封油的备用油源主要是:汽轮机主油泵来的1.6~1.8MPa高压油;主油箱通过氢侧密封备用油泵过来的润滑油;汽轮机轴承润滑油泵提供的0.035~0.105MPa低压油。

5、发电机密封瓦间隙超标

在汽轮发电机正常运行的工况下,由于转轴高速运转的机械甩油作用,以及回油温度升高的热作用,含有空气和水份的密封油在密封瓦里侧的回油腔内被汽化或雾化,形成油烟,被风扇负压吸入机内,并随机内氢气一起在机内风路里循环,导致氢气纯度下降,氢气受到污染。

6、油质监督重视不够

对于新投产的机组,对油质的工作不够重视,油质往往难以达到要求,使密封瓦或轴颈磨损,造成间隙增大、超标,氢气漏量加大。一方面补氢次数增加,另一方面使平衡阀和差压阀的控制精度降低,同时因运行人员紧张,使每八小时应对刮片式滤油器进行旋转清理并排污的要求不能保质保量完成。

7、空侧密封油箱排烟风机(即防爆风机)存在抽油或出力不够的问题。

若密封油防爆风机整体布置在6m标高,而空侧密封油箱实际上是一段直径加大的回油管,布置在运转层楼板上面,标高约11m左右。在风机的进口挡板前或风机底部装有一直径约40mm的排污管,正常运行时用来排去管道中极少量的油水混合物等液体杂质。从此系统来看,风机只要克服油箱顶部上的一段排烟管道(垂直段)所造成的静压头,就可以把油抽走,而此管道段高约0.3m,由于风机的全压头一般在3500Pa左右,可见风机是完全能够将油从油箱抽出的。

三、发电机氢气纯度湿度不合格原因分析及防范措施

1、制氢站及气源方面

通过长时期的跟踪取样分析,测得制氢站氢气,发电机补氢口基本一致,确证氢气纯度和湿度了制氢站来氢纯度合格,排除了因制氢站来氢导致发电机内部氢气纯度和湿度下降的可能性.(因为现在露点在-40度左右,而氢气纯度99。8%,不含有硫化氢。)。

2、氢气干燥装置方面

①氢气干燥装置设计不够合理。目前300MW以上大型发电机基本都是由转子两端的风扇随转子旋转产生风压差,在机内形成氢气封闭循环流动,当发电机在停运备用状态下,机内氢气差压消失,依靠压差进气的氢气干燥器氢气无法流动,干燥器不能对氢气进行干燥。(通过检测湿度和纯度均合格,不应该是此原因造成)。②氢气干燥器安装位置不合理,设备存在缺陷,发电机运行中干燥器投运不正常。部分电厂氢气干燥器设计安装在6m层,但大多数电厂的氢气干燥器设计安装在0m层,由于管路长、管径小、阻力大、漏氢点多,自动装置不可靠,加之冷凝式氢气干燥器运行2h后要停2h进行除霜排湿,而设计配套是1机1台(部分电厂是1机三台),便形成了停停开开的运行方式。

3、氢气冷却器冷却水量及水温调整控制不当

发电机启动升负荷或低负荷运行,氢气冷却器冷却水量调整控制不当或冷却水温过低,流量过大,导致氢温过低产生凝露。内冷水系统机内接头和氢冷器微细渗漏也可能导致机内氢气湿度增大。

4、运行值班人员巡视检查维护不到位

发电机油水指示计失效、无远传报警功能或消泡箱液位开关报警故障,运行值班人员巡视检查维护不到位,未按规定进行排污排油水,造成油水长期沉积在发电机内蒸发,影响氢气湿度升高。

5、发电机进油

电厂大多采用双流环式密封瓦,此种结构的密封瓦,要求装配间隙精度相当严,如果制造、安装达不到要求,间隙过大等,都极易造成密封油进入发电机。

篇2:发电机氢气纯度降低原因防范措施

1、发电机本体方面

发电机本体在安装过程中必须严格按照制造厂图纸说明书和《电力建设施工及验收技术规范》(以下简称《规范》)做好以下现场试验:

①发电机定子绕组水路水压试验。该试验必须在电气主引线及柔性连接线安装后进行,主要检查定子端部接头、绝缘引水管、汇水管、过渡引线及排水管等处有无渗漏现象。②发电机转子气密性试验。试验时特别要用无水乙醇检查导电螺钉处是否有渗漏现象。③氢气冷却器水压试验。④发电机定子单独气密性试验。试验时用堵板封堵密封瓦座,试验范围包括:定子、出线瓷套管、出线罩、测温元件接线柱板、氢冷器、氢冷器罩、端盖、机座等。试验介质应为无油、干净、干燥的压缩空气或氮气,试验压力为0.3Mpa,历时24小时,要求漏气量小于0.73m3/24h(或漏氢率小于0.3%)。

2、发电机外端盖方面

①在发电机穿转子之前先进行外端盖试装。主要检查水平、垂直中分面的间隙,在把紧1/3螺栓状态下,用0.03mm塞尺检查应不入。②在把合外端盖前,应预填HDJ892密封填料于接合面密封槽内,然后均匀把紧螺栓。再用专用工具注入HDJ892密封胶于密封槽内。

3、氢气冷却器方面

①氢气冷却器罩通过螺栓把紧在定子机座上,之间的结合面有密封槽,注入密封胶进行密封,安装完后在氢气冷却器罩与定子机座之间烧密封焊。②氢气冷却器装配在氢气冷却器罩内,冷却器与冷却器罩之间用密封垫密封,密封垫两面均匀涂一层750-2型密封胶,氢气冷却器组装前后均进行严密性试验。

4、发电机出线罩处泄漏

发电机出线罩安装完后应及时烧密封焊,一旦穿入出线将无法内部焊接,若运行中确认发电机出线罩处泄漏,往往因位置狭窄或运行安全考虑无法处理。

5、发电机轴密封装配方面

轴密封装置是氢密封系统中一个很重要的环节,机组大多采用双流环式油密封,密封瓦的氢侧与空侧各自是独立的油路,平衡阀使两路油压维持平衡(压差小于1Kpa);油压与氢压差由差压阀控制(压差为0.085±0.01MPa),密封瓦可以在轴颈上随意径向浮动,并通过圆键定位于密封座内。

①密封座水平接合面应严密,每平方厘米接触1-2点的面积不应低于75%,且均匀分布。②在把紧水平接合面螺栓的情况下,密封座内与密封瓦配合的环形垂直面以及密封座与端盖的垂直接合面均应垂直无错口,水平接合面用0.03mm塞尺检查应塞不进。对座内沿轴向两侧面的检查,可用整圆无错口的密封瓦做平板放入其内做涂色检查,两侧面均应均匀接触。③密封瓦座各垂直配合面应光洁,各油室畅通,无铁锈、锈皮等杂物。④密封瓦座各把合螺孔的丝孔应无损坏,经试装确认能够把紧密封座。⑤密封瓦水平接合面应接触良好,每平方厘米接触1-2点的面积应不低于75%,且均匀分布。⑥在把合好密封瓦后,密封瓦的上、下两半的垂直面必须在同一平面内,不得错口。在平板上检查应无间隙。⑦密封瓦两侧垂直面应光洁,表面无凹坑和裂纹,两垂直面的不平行度应符合图纸要求。⑧巴氏合金应无夹渣、气孔,表面无凹坑和裂纹,经检查应无脱胎现象。密封瓦油孔和环形油室内必须光洁,无铁屑、锈皮等杂物。⑨密封瓦与轴颈的间隙为0.23-0.28mm,间隙偏小可对密封瓦乌金进行适当的均匀修刮,如间隙偏大,则更换密封瓦;密封瓦与密封瓦座的轴向间隙为0.19-0.23mm,间隙偏小可将密封瓦上磨床研磨,如间隙偏大,则更换密封瓦。⑩组装密封瓦时,注意辨别汽、励两端密封装置,不能装错。在把合密封座与端盖垂直接合面的过程中,应不断拨动密封瓦,保证在所有螺栓把紧后,密封瓦在座内无卡涩。油密封装置装完后,各接合面螺栓应全部锁紧。⑾油密封装置的油腔必须彻底清理,各油压取样管接头在把紧后均不能堵塞和渗漏。否则会因为油压测量不准而影响密封油的跟踪调节。

6、发电机气体管道方面

①气体管道法兰密封垫均采用δ=2mm的塑料王板加工。法兰焊接时要先将法兰螺栓紧固,然后进行焊接,避免焊接变形使法兰出现张口而密封不严。②气体管道在现场进行二次设计,对管道的走向进行统一规划布置,保证走向合理、美观、无∪形弯。所有气体管道与发电机均采用焊接相连,发电机定子多余的接口用堵头焊死。③气体管道的阀门全部采用密封性能良好的隔膜阀,在现场进行1.25倍的水压试验,保证严密不漏。④气体管道安装完后,单独进行气密性试验。

7、密封油系统方面

密封油系统向密封瓦提供密封油,油压必须随时跟踪发电机内气体压力的变化(压差为0.085±0.01MPa),且密封瓦氢空侧的油压必须时刻保持平衡(压差小于1Kpa)。所以,密封油系统运行正常与否直接关系到发电机密封瓦是否能有效密封。

①必须保证密封油系统的清洁度,油循环后,油质必须达到MOOG四级以上标准。②密封油系统的管道在现场进行二次设计,对管道的走向进行统一规划布置,压差阀和平衡阀的引压管走向一致且连接正确,不得有∪形弯,引压管采用不锈钢管,焊接时采用套管焊接,保证管内的清洁,同时必须保证引压管不得有任何渗漏。③在密封油循环阶段,必须安排对密封瓦进行翻瓦清理。④氢密封油箱端盖应密封严密,无泄漏。

8、发电机整套风压试验

发电机整套风压试验是发电机本体及辅助系统安装完后的一次质量大检验,是保证发电机漏氢率(量)达到预定目标的最后一道工序,所有造成系统泄漏的现象均必须在此阶段消除。

二、发电机氢气纯度下降原因分析及防范措施

1、密封油差压阀、平衡阀及相关表计故障

在正常的情况下,发电机轴封装置内密封瓦中的空侧和氢侧密封油具有相同的压力,空侧和氢侧密封油各自保持相对独立的状态进行循环。若密封油系统的平衡阀跟踪不好,或是由于平衡阀空侧、氢侧压力取样管中的压力损失不同,虽然从平衡表上观察空、氢两侧的密封油压是平衡的。

①若空侧密封油压高于氢侧密封油压,则含有大量空气的空侧密封油向氢侧密封油窜油,此时窜到氢侧的空侧密封油将随氢侧密封油一起回到发电机的氢侧回油腔,即消泡箱,然后经氢侧回油管,返回到氢侧密封油箱中,由于空侧密封油箱中含有多量的空气和水分,当含有空气的油通过密封瓦与氢气接触时,根据分压定律,油中分离出来的气或汽会进入到发电机内,造成氢气纯度下降、湿度上升将空侧密封油内所含的空气带入发电机内。

?②若氢侧密封油压高于空侧密封油压,则氢侧密封油向空侧密封窜油,此时将使氢侧密封油箱中的密封油量减少,油位降低,系统为了保证安全运行,将自动向氢侧密封油箱中补油。这样就将含有大量空气的空侧密封油补进了氢侧密封油箱,使氢侧密封油中的空气含量增加,氢气纯度下降、湿度上升得更快。按厂家要求,密封瓦空、氢两侧的密封油压是平衡的,空、氢压力平衡阀安装在氢侧主管路上(立式倒装),通过调整阀体内的弹簧可以调整压力平衡,调整精度可达50mm水柱,大约在1KPa以下。热控专业进行压力表的效验,通过分析判断氢气纯度下降是汽端或励端造成的,以便有针对性的进行分析处理。

2、发电机进油方面

了解机组以前或现在是否存在发电机进油的问题,若大量的氢侧密封油漏入发电机内,将使氢侧密封油箱油位降低,在系统的自动补油过程中,会将含有大量空气的空侧密封油补进了氢侧密封油箱,从而使氢侧密封油中的空气含量增加,导致发电机纯度下降。

3、氢密封油箱浮子阀故障

密封油系统中的自动补、排油的浮球阀卡涩,所导致的浮球阀不能正常开启或关闭,或因浮球阀的浮球内漏后进油,不能正常浮起造成浮球阀不能正常开启或关闭。这样将导致密封油系统中自动补、排油的功能失常,此时又分以下3种情况:

①若是排油阀出现故障,处于常排状态,则系统为了氢侧密封油箱油位的稳定,就会不断地将含有大量空气的空侧密封油补入氢侧密封油箱,此时补油阀也将进行连续的补油;②若是补油阀出现故障,处于常补状态,系统就会不断地将含有大量空气的空侧密封油补入氢侧密封油箱,使氢侧密封油中的空气含量增加。此时排油阀也将进行连续的排油;③补排油阀都失去了正常的功能,此时发电机密封油系统中的氢侧密封油箱则处于一个连续补排油的动态平衡状态,将大量含有空气的空侧密封油补进了氢侧密封油箱,使氢侧密封油中的空气含量增加。

4、密封油补油方式方面

从补油方式的合理性去分析,其中哈尔滨电机厂300MW发电机密封油的备用油源主要是:汽轮机主油泵来的1.6~1.8MPa高压油;主油箱通过氢侧密封备用油泵过来的润滑油;汽轮机轴承润滑油泵提供的0.035~0.105MPa低压油。

5、发电机密封瓦间隙超标

在汽轮发电机正常运行的工况下,由于转轴高速运转的机械甩油作用,以及回油温度升高的热作用,含有空气和水份的密封油在密封瓦里侧的回油腔内被汽化或雾化,形成油烟,被风扇负压吸入机内,并随机内氢气一起在机内风路里循环,导致氢气纯度下降,氢气受到污染。

6、油质监督重视不够

对于新投产的机组,对油质的工作不够重视,油质往往难以达到要求,使密封瓦或轴颈磨损,造成间隙增大、超标,氢气漏量加大。一方面补氢次数增加,另一方面使平衡阀和差压阀的控制精度降低,同时因运行人员紧张,使每八小时应对刮片式滤油器进行旋转清理并排污的要求不能保质保量完成。

7、空侧密封油箱排烟风机(即防爆风机)存在抽油或出力不够的问题。

若密封油防爆风机整体布置在6m标高,而空侧密封油箱实际上是一段直径加大的回油管,布置在运转层楼板上面,标高约11m左右。在风机的进口挡板前或风机底部装有一直径约40mm的排污管,正常运行时用来排去管道中极少量的油水混合物等液体杂质。从此系统来看,风机只要克服油箱顶部上的一段排烟管道(垂直段)所造成的静压头,就可以把油抽走,而此管道段高约0.3m,由于风机的全压头一般在3500Pa左右,可见风机是完全能够将油从油箱抽出的。

三、发电机氢气纯度湿度不合格原因分析及防范措施

1、制氢站及气源方面

通过长时期的跟踪取样分析,测得制氢站氢气,发电机补氢口基本一致,确证氢气纯度和湿度了制氢站来氢纯度合格,排除了因制氢站来氢导致发电机内部氢气纯度和湿度下降的可能性.(因为现在露点在-40度左右,而氢气纯度99。8%,不含有硫化氢。)。

2、氢气干燥装置方面

①氢气干燥装置设计不够合理。目前300MW以上大型发电机基本都是由转子两端的风扇随转子旋转产生风压差,在机内形成氢气封闭循环流动,当发电机在停运备用状态下,机内氢气差压消失,依靠压差进气的氢气干燥器氢气无法流动,干燥器不能对氢气进行干燥。(通过检测湿度和纯度均合格,不应该是此原因造成)。②氢气干燥器安装位置不合理,设备存在缺陷,发电机运行中干燥器投运不正常。部分电厂氢气干燥器设计安装在6m层,但大多数电厂的氢气干燥器设计安装在0m层,由于管路长、管径小、阻力大、漏氢点多,自动装置不可靠,加之冷凝式氢气干燥器运行2h后要停2h进行除霜排湿,而设计配套是1机1台(部分电厂是1机三台),便形成了停停开开的运行方式。

3、氢气冷却器冷却水量及水温调整控制不当

发电机启动升负荷或低负荷运行,氢气冷却器冷却水量调整控制不当或冷却水温过低,流量过大,导致氢温过低产生凝露。内冷水系统机内接头和氢冷器微细渗漏也可能导致机内氢气湿度增大。

4、运行值班人员巡视检查维护不到位

发电机油水指示计失效、无远传报警功能或消泡箱液位开关报警故障,运行值班人员巡视检查维护不到位,未按规定进行排污排油水,造成油水长期沉积在发电机内蒸发,影响氢气湿度升高。

5、发电机进油

电厂大多采用双流环式密封瓦,此种结构的密封瓦,要求装配间隙精度相当严,如果制造、安装达不到要求,间隙过大等,都极易造成密封油进入发电机。

篇3:氢气安全管理制度

第一章?主题内容与适用范围

氢气是一种无色无臭气体,无毒、无腐蚀性、极易燃烧,在空气中浓度达到4.1%~74.2%时成为爆炸性混合物,遇火星、高热能引起燃烧爆炸。氢气比空气轻,在室内使用或储存氢气,当出现泄漏时,氢气上升滞留屋顶,不易自然排除,遇火星引起爆炸。

根据国家危险化学品管理条例,公安、消防部门关于易燃、易爆、有毒物品使用、存储管理规定,结合公司使用、存储实际情况,特制定本制度。

本制度适用于公司各使用、存储部门

第二章?氢气安全存储、使用要求

一、氢气领用、保管、使用严格执行:双人保管、双人发放、双人领用、双帐本(发放单位和领用单位)和双锁,做到日清月结,帐物相符,贯彻谁领用谁负责,危险品到哪里责任到哪里的原则。

二、贮存和使用氢气的场所必须有良好的通风,而且通风口应设置在屋顶的最高部位,屋顶内平面要平整,不要凹凸不平,以防氢气在凹处积聚。在接近屋顶的上部不能有火源和电源,在设置电源时应尽量考虑布置在下方。所安装的电气设备应满足场所防火防爆的要求。

三、氢气瓶不能和强酸、强碱及氧化剂等化学危险物品同库存放。氢气瓶必须与氧气瓶、氯气瓶、氟气瓶等性能相抵触的气瓶隔离存放。

四、氢气瓶在两端应有两道胶圈,戴有安全帽,以减轻撞击防止损坏阀门。搬运中要轻拿轻放,不准摔滚,更不得从汽车上往下滚卸。运输时要放稳固并绑扎牢固,严防搬运过程中的撞击和强烈震动。

五、使用时要严格按操作规程和安全操作要点执行,使用时减压阀应安装牢固,开启气瓶阀门时要缓慢。气瓶的阀门如有损坏不得使用,并应由专门单位维修。

六、除贮存、使用氢气的场所有可能有氢气泄漏外,某些物质发生化学反应时也会产生氢气,如金属钾、钠遇水会放出氢气;活泼金属遇酸发生置换反应产生氢气;蓄电池充电时也有氢气放出。所以对于有可能产生氢气的场所,也应根据情况采取相应的防火防爆措施

七、生产车间(实验室内)使用气瓶,其数量不得超过5瓶,并应符合下列要求:

1、室内必须通风良好,保证空气中氢气最高含量不超过1%(体积比)。

2、氢气瓶与盛有易燃、易爆、可燃物质及氧化性气体的容器和气瓶不能同室摆放。

3、不能与明火(或能产生明火的设备)、普通电气设备同室摆防。

4、不能在空调装置、空气压缩机和通风设备等吸风口的位置放置氢气瓶。

5、设有固定气瓶的支架。

八、使用气瓶,禁止敲击、碰撞;不得靠近热源;夏季应防止曝晒。

九、必须使用专用的减压器,开启时,操作者应站在阀口的侧后方,动作要轻缓。

十、阀门或减压器泄漏时,不得继续使用;阀门损坏时,严禁在瓶内有压力的情况下更换阀门。

十一、瓶内气体严禁用尽,应保留0.5公斤力/厘米^2以上的余压。

十二、严禁在室内排放氢气。

十三、设备、管道和阀门等连接点泄漏检查,可采用肥皂水或携带式可燃性气体防爆检测仪,禁止使用明火。

十四、当氢气发生大量泄漏或积聚时,应立即切断气源,进行通风,不得进行可能发生火花的一切操作。

十五、严禁在产生氢气场所内使用明火和其他激发能源;禁止使用电炉、电钻、火炉、喷灯等一切产生明火、高温的工具与热物体;不得携带火种进入禁火区;选用铜质或铍铜合金工具;穿棉质工作服的防静电鞋。

十六、严禁氢气管道穿过办公室、休息室、生活间及其他生产工作车间。

第三章?氢气的安全使用

一、使用氢气要严格遵守安全制度及操作规程。

二、操作人员必须取得上岗资格。

三、使用前要严格检查氢气钢瓶是否符合国家有关安全标准;阀门、气管是否有泄漏现象。

四、使用过程中,反应容器通氢前必须要进行排空气处理,防止回火,反应完成后,必须关紧阀门,将容器内的氢气排空,严禁将剩余氢气滞留在任何反应容器中,排除的含氢尾气必须完全燃烧处理后安全排放。

五、使用过程中阀门应轻开请关,适量使用氢气,严禁过量、过压使用及直接排放。

六、氢气钢瓶搬运必须轻装轻卸,严禁撞击、抛投或横倒在地滚动搬运。

七、通氢反应过程必须有专人在岗操作,防止意外发生。

第四章?氢气着火措施

一、切断气源。

二、冷却、隔离,防止火灾扩大。

三、保持氢气系统正压状态,以防回火。

四、氢火焰不易察觉,救护人员防止外露皮肤烧伤。